On strong distances in oriented graphs
نویسندگان
چکیده
Let D be a strongly connected digraph. The strong distance between two vertices u and v in D, denoted by sdD(u; v) is the minimum size of a strongly connected subdigraph of D containing u and v. The strong eccentricity, se(u), of a vertex u of D, is the strong distance between u and a vertex farthest from u. The minimum strong eccentricity among the vertices of D is the strong radius, srad(D), and the maximum strong eccentricity is the strong diameter, sdiam(D). For asymmetric digraphs (that is, oriented graphs) we present bounds on the strong radius in terms of order and on the strong diameter in terms of order, girth and connectivity. c © 2003 Elsevier Science B.V. All rights reserved.
منابع مشابه
New skew equienergetic oriented graphs
Let $S(G^{sigma})$ be the skew-adjacency matrix of the oriented graph $G^{sigma}$, which is obtained from a simple undirected graph $G$ by assigning an orientation $sigma$ to each of its edges. The skew energy of an oriented graph $G^{sigma}$ is defined as the sum of absolute values of all eigenvalues of $S(G^{sigma})$. Two oriented graphs are said to be skew equienergetic iftheir skew energies...
متن کاملA note on vertex-edge Wiener indices of graphs
The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...
متن کاملCycles in k-traceable oriented graphs
A digraph of order at least k is termed k-traceable if each of its subdigraphs of order k is traceable. It turns out that several properties of tournaments—i.e., the 2-traceable oriented graphs—extend to k-traceable oriented graphs for small values of k. For instance, the authors together with O. Oellermann have recently shown that for k = 2, 3, 4, 5, 6, all ktraceable oriented graphs are trace...
متن کاملReciprocal Degree Distance of Grassmann Graphs
Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.
متن کاملNew bounds on proximity and remoteness in graphs
The average distance of a vertex $v$ of a connected graph $G$is the arithmetic mean of the distances from $v$ to allother vertices of $G$. The proximity $pi(G)$ and the remoteness $rho(G)$of $G$ are defined as the minimum and maximum averagedistance of the vertices of $G$. In this paper we investigate the difference between proximity or remoteness and the classical distanceparameters diameter a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 266 شماره
صفحات -
تاریخ انتشار 2003